Have you ever thought about what it would be like to fire a cannon? How far do you think a cannonball can go when you shoot it out of a cannon? Can you make a cannonball go a certain distance? Are some cannons better than others? If so, in what ways?

These are just a few questions that teachers can ask students to think about as they implement a STEM activity—building an air cannon—in their math classroom. In what follows, readers are presented with an investigation grounded in STEM concepts that elementary and middle school teachers carried out to think about ways of implementing STEM activities into their instruction.

Air Cannon is an activity developed around the science concept of force, or energy, and is introduced on PBS’s Design Squad Nation (WGBH Foundation 2008). This PBS feature promotes the engineering principles of design for young learners and often presents activities one can create with everyday types of materials. This particular activity has great potential for elementary school students in grades 3–5 in that it uses principles of science (force/energy), technology and engineering (building the air cannon), and mathematics (measurement and data). Such an activity can be worked into classroom instruction to “hit” on any one specific area or can be fully integrated to meet all STEM areas. One version of carrying out the Air Cannon investigation targets mathematics concepts specific to the elementary levels and is the focus of this article.

Estimating and measuring length, representing and interpreting data

The Common Core (CCSSI 2010) mathematics concepts promoted in this investigation focus on (1) estimating and measuring lengths in standard units and (2) representing and interpreting data. These topics receive attention across grades 3–5 as well as support the Common Core’s Standards for Mathematical Practice (SMPs), which include the following:

- Make sense of problems and persevere in solving them (SMP 1)
- Construct viable arguments and critique the reasoning of others (SMP 3)
- Model with mathematics (SMP 4)
- Use appropriate tools strategically (SMP 5)
- Look for and make use of structure (SMP 7)

Connecting content with practices allows a teacher to present rich situations in which students can engage in doing mathematics while using principles of science, technology, and engineering. Students gain experience in estimation (comparing different launches—how much farther one cotton ball goes than another), measurement (actually using...
metersticks and tape measures to measure distance of launches—in both the metric and English system), and data collection (displaying launch data in frequency tables, graphs, and measures of central tendency).

Scientific inquiry, engineering design, problem solving

Before carrying out this exploration, students need exposure to scientific inquiry, the engineering design process, and problem solving. Each one of these methods possesses specific actions and reactions, but all are related in the way the investigative process occurs. Students are presented with a task, think about approaches toward working through the task, carry out strategies to resolve it, reflect on and evaluate the product, and finally determine if they have more work to do. If so, they carry out the process again. If not, they report on findings that best answer or solve the problem under investigation. These steps are all part of what scientists, engineers, technology experts, and mathematicians do in their work with real problems. This activity is integrative and addresses standards in each STEM area. Although these areas are all important for students to experience, this article focuses on the Common Core State Standards for Mathematics (CCSSM) and the Standards for Mathematical Practice (SMPs) (CCSSI 2010) for teachers to consider.

The first phase in this investigation is to have students think about building their own air cannon device using simple, everyday materials. Before implementing the investigation, have students collect and bring in paper and plastic cups, Pringles® potato chip cans (long and short), little cookie snack containers, plastic bags (newspaper and baggie size), duct tape or packing tape, and cotton balls or puff balls. These everyday materials are often found in most homes or after-school programs (see fig. 1). After materials are in place for classroom use, introduce the investigation to students so they may think about ways to design the air cannon. Implementing the engineering design process is a familiar technique for students (see the sidebar on p. 504). This design process is well known among science and engineering communities. Students begin with a problem, brainstorm ways to approach it, sketch possible designs, build the best design, test and evaluate it, redesign components that would make “it” a better fit, and build the model again. After students have built their best product, they share their findings. The processes of building, testing and evaluating, and redesigning are cyclic. For this particular investigation, the teacher follows the steps of the engineering design process and provides students with time and guidance at each phase.

Promoting mathematical concepts

As students engage in the engineering design process, promoting the mathematical concepts is a crucial step for teachers to take so that students will recognize connections between real problems and concepts taught in school. Estimation and measurement, along with representing and interpreting data, are key areas of focus for this investigation. Teachers indicated that they like to have their students predict or guess—before carrying out the mathematical portion of this investigation—what they believe will happen with the firing of the cannons. In other words, how far will the cotton ball go when I shoot it out of my air cannon?
Components that students may need to consider include the size of container used to build the cannon, the circumference of the cup or container, the size of the hole in the cup or container, the size of the bag, and the force of the push (to the bag) to launch the cotton ball. After making predictions, students should have several opportunities to “fire their cannons.” This allows them to see how close they were with their predictions before working with the pertinent mathematics concepts.

At this point, estimation and measurement of various cannon launches take center stage. Using standard units of measurement (metric and English) allows students opportunities to measure real distances and, in the process, to make conversions among units while making observations about how to improve on the air cannon model to shoot a greater distance. Finally, data analysis includes collecting measurements for various launches of the same container for numerous runs to see how far the cotton ball goes. Students can use these data for studying the mean, median, and mode as well as ways of representing and graphing results. See figure 3 for a handout that may be used to guide the Air Cannon investigation. CCSSM (CCSSI 2010) progresses into working with graphing points on a coordinate plane to solve real-world and mathematical problems for grade 5. The teacher could organize several grids marked off on a classroom floor made of square tiles to use as students fire their cannons, allow the cotton ball to land, and then note the ordered pair on the coordinate grid. Problems related to these points could be generated as students move toward studying algebra and the concept of rise over run for developing slope and linear measurement.

Constructing an air cannon engages students in building models, analyzing the work
of others, generating new questions to explore, and working with mathematics concepts in a nontrivial way. At the elementary school level, identifying activities that target multiple areas simultaneously and generate excitement for student learning and sense making are important considerations for teachers. In addition to the STEM focus, opportunities exist for connecting to other disciplines, such as language arts, music, and art. Because pirate stories typically have cannons and cannonballs as part of the story line, children's books on pirates provide a good connection to language arts. Neal's book *The Pirate Who Couldn't Say Arrr!* (2011) will appeal to younger learners; Carlson's book *The Very Nearly Honorable League of Pirates: Magic Marks the Spot* (2013) will appeal to students at the upper elementary levels. Students can write their own stories or poems, draw or paint pictures, perform skits, and make up songs or melodies to go along with this investigation. The Air Cannon investigation has the potential for students to return to the build stage (step 4; see the sidebar on p. 504) if they think they can improve on their design. This process continues until they create the best model possible that meets the conditions of shooting the cotton ball as far as possible.

FIGURE 2

MARY C. ENDERSON

I ♥ parabolas.

MATHEMATICS IS ALL AROUND US.
Students may use this activity sheet to navigate through the Air Cannon investigation. A full-size version is available; to access it, see the more4u box at the end of this article.

Air Cannon Investigation: Ready, Aim, Fire!

Materials you will need:
- A cup or container
- Cotton balls or puff balls
- A plastic bag
- Scissors
- Duct tape or packing tape
- A tape measure

Today you will create your own version of a cannon that can shoot a cannonball. Throughout the process, we will be using STEM concepts to help us create cannons, investigate how they can shoot a cotton ball, and collect data from these instruments to make sense of important principles we are studying.

1. Think about how to build your own air cannon using the identified materials. Your goal is to have the cannon shoot a cotton ball as far as possible.
2. Sketch and jot notes about this process in your engineering design journals. You are to record one or two prototypes of your air cannon.
3. Collect materials provided in the classroom for building it.
4. Build the air cannon. Don’t forget to cut a hole in the cup or container for the cotton ball. Predict how far it will shoot it out.
5. Test it. How does your prediction match the actual launch of the cotton ball? You may wish to test several variables before proceeding. For example, try a different method for “loading” the air cannon with air, or experiment with different techniques of applying force to “shoot” the cannon.
6. Once you have determined the best method for shooting your air cannon, use what you have learned to respond to the following:
 a. How does the force of pushing the bag impact the cotton ball?
 b. Does the size of the bag matter when you fire the cotton ball? In other words, will the cotton ball go farther with a bigger bag? How do you know?
 c. Does the size of the cup or container make a difference in how far the cotton ball goes?
 d. Shoot your air cannon at least ten times and take measurements (using the tape measures) of how far the cotton ball goes. Record these data in a chart. Using these data, find the mean, median, and mode.
7. Think about whether the results would be different with a different air cannon. Record your thoughts/responses.
8. Now connect with another classmate. Look at his or her air cannon and data that were generated. How are the results similar to yours? How are they different?
9. With your partner, create a new air cannon. Shoot it ten times per person (for a total of twenty times) and take measurements of how far the cotton ball travels for each shot. How are the data the same? Different?
10. Based on your air cannons, make some conclusions about the “best” cannon and reasons it is the best. Be sure to use data to support your results.

REFERENCES

Mary C. Enderson, menderso@odu.edu, codirects the newly formed MonarchTeach program, a UTeach replication program, at Old Dominion University in Norfolk, Virginia. She teaches mathematics pedagogy and content courses to preservice and in-service teachers and has research interests in teacher content knowledge, STEM integration, and mathematics literacy. Edited by Terri L. Kurz, terri.kurz@asu.edu, who teaches mathematics and mathematics methodology at Arizona State University at the Polytechnic campus in Mesa, and by Jorge Garcia, Jorge.garcia@csuci.edu, who teaches at California State University Channel Islands.
Principles to Actions: Ensuring Mathematical Success for All

What it will take to turn the opportunity of the Common Core State Standards for Mathematics into reality in every classroom, school, and district.

Continuing its tradition of mathematics education leadership, NCTM has undertaken a major initiative to define and describe the principles and actions, including specific teaching practices, that are essential for a high-quality mathematics education for all students.

This landmark title offers guidance to teachers, mathematics coaches, administrators, parents, and policymakers:

• Provides a research-based description of eight essential Mathematics Teaching Practices
• Describes the conditions, structures, and policies that must support the Teaching Practices
• Builds on NCTM’s Principles and Standards for School Mathematics and supports implementation of the Common Core State Standards for Mathematics to attain much higher levels of mathematics achievement for all students
• Identifies obstacles, unproductive and productive beliefs, and key actions that must be understood, acknowledged, and addressed by all stakeholders
• Encourages teachers of mathematics to engage students in mathematical thinking, reasoning, and sense making to significantly strengthen teaching and learning

www.nctm.org/PrinciplesToActions

© April 2014, Stock #14861
List Price: $28.95 | Member Price: $23.16
SAVE 25%! $21.71
Use code TCM0415 when placing order. Offer expires 6/30/15.*

Also available as an e-book
List Price: $4.99 | Member Price: $3.99

INSIDE
Progress and Challenge
Effective Teaching and Learning
Essential Elements
 Access and Equity
 Curriculum
 Tools and Technology
 Assessment
 Professionalism
Taking Action
References

Go to the link at left to access the full table of contents, preface, and an excerpt.

*This offer reflects an additional 5% savings off list price, in addition to your regular 20% member discount.

NCTM Members Save 25%! Use code TCM0415 when placing order. Offer expires 6/30/15.*

For more information or to place an order, please call (800) 235-7566 or visit www.nctm.org/store.