Beliefs about Teaching and Learning Mathematics

Beliefs about teaching and learning mathematics				
Unproductive beliefs Productive beliefs				
Mathematics learning should focus on practicing procedures and memorizing basic number combinations.	Mathematics learning should focus on developing understanding of concepts and procedures through problem solving, reasoning, and discourse.			
All students need to learn and use the same standard computational algorithms and the same prescribed methods to solve algebraic problems.	All students need to have a range of strategies and approaches from which to choose in solving problems, including, but not limited to, general methods, stan- dard algorithms, and procedures.			
Students can learn to apply mathematics only after they have mastered the basic skills.	Students can learn mathematics through exploring and solving contextual and mathematical problems.			
The role of the teacher is to tell students exactly what definitions, formulas, and rules they should know and demonstrate how to use this information to solve math- ematics problems.	The role of the teacher is to engage students in tasks that promote reason- ing and problem solving and facilitate discourse that moves students toward shared understanding of mathematics.			
The role of the student is to memorize information that is presented and then use it to solve routine problems on home- work, quizzes, and tests.	The role of the student is to be actively involved in making sense of mathemat- ics tasks by using varied strategies and representations, justifying solutions, making connections to prior knowledge or familiar contexts and experiences, and considering the reasoning of others.			
An effective teacher makes the mathe- matics easy for students by guiding them step by step through problem solving to ensure that they are not frustrated or confused.	An effective teacher provides students with appropriate challenge, encourages perseverance in solving problems, and supports productive struggle in learning mathematics.			

Principles to Action, Ensuring Mathematics Success for All (NCTM, 2014) p 11

Characteristics of Mathematical Tasks

Levels of Demands

Lower-level demands	Lower-level demands
(memorization):	(procedures without connections):
• reproducing previously learned facts, rules,	• are algorithmic
formulas, definitions or committing them to	• require limited cognitive demand
memory	• have no connection to the concepts or
• Cannot be solved with a procedure	meaning that underlie the procedure
• Have no connection to concepts or	• focus on producing correct answers instead
meaning that underlie the facts rules,	of understanding
formulas, or definitions	• require no explanations
<u>Higher-level demands</u>	<u>Higher-level demands</u>
(procedures with connections):	(doing mathematics):
<u>Higher-level demands</u>	Higher-level demands
(procedures with connections):	(doing mathematics):
• use procedure for deeper understanding of	• require complex non-algorithmic thinking
<u>Higher-level demands</u>	Higher-level demands
(procedures with connections):	(doing mathematics):
• use procedure for deeper understanding of	• require complex non-algorithmic thinking
concepts	• require students to explore and understand
<u>Higher-level demands</u>	Higher-level demands
<u>(procedures with connections):</u>	(doing mathematics):
• use procedure for deeper understanding of	• require complex non-algorithmic thinking
concepts	• require students to explore and understand
• broad procedures connected to ideas	the mathematics
<u>Higher-level demands</u>	Higher-level demands
<u>(procedures with connections):</u>	(doing mathematics):
• use procedure for deeper understanding of	• require complex non-algorithmic thinking
concepts	• require students to explore and understand
• broad procedures connected to ideas	the mathematics
instead narrow algorithms	• demand self-monitoring of one's cognitive
<u>Higher-level demands</u>	Higher-level demands
<u>(procedures with connections):</u>	(doing mathematics):
• use procedure for deeper understanding of	• require complex non-algorithmic thinking
concepts	• require students to explore and understand
• broad procedures connected to ideas	the mathematics
instead narrow algorithms	• demand self-monitoring of one's cognitive
• usually represented in different ways	process
Higher-level demands	Higher-level demands
(procedures with connections):	(doing mathematics):
• use procedure for deeper understanding of	• require complex non-algorithmic thinking
concepts	• require students to explore and understand
• broad procedures connected to ideas	the mathematics
instead narrow algorithms	• demand self-monitoring of one's cognitive
• usually represented in different ways	process
• require some degree of cognitive effort;	• require considerable cognitive effort and

Leinwand, S., D. Brahier, and D. Huinker . Principles to Action. Reston, VA: National Council of Teachers of Mathematics, 2014 (pg 18)

Productive Struggle Reflection Survey

Rate the frequency of each statement in your classroom.

1. I anticipate what students might struggle with during a lesson and I prepare to support them. Never Always 2. I give students time to struggle with tasks and ask questions that scaffold thinking without doing the work for them. Never Always 3. I help students realize that confusion and errors are a natural part of learning. We talk about mistakes, misconceptions, and struggles. Never Always 4. I praise students for their efforts more frequently than the correct answers. Never Always 5. My students struggle at times but they know breakthroughs come from struggle. Never Always 6. My students ask questions that are related to their struggles to help them understand. Never Always 7. My students persevere in solving problems. They don't give up. Never Always 8. My students help one another without telling their classmates what the answer is or how to solve it. Never Always

www.nctm.org/profdev

Productive Struggle Images

NAME _____

Charleston | February 6–7, 2015 Effective Teaching with Principles to Actions: Indementing College- and Career-Readiness Standards MCTM INTERACTIVE INSTITUTES © 2015 National Council of Teachers of Mathematics www.nctm.org/profidev

Purposeful Questions

What Are Teachers Doing?	What Are Students Doing?

National Council of Teachers of Mathematics. (2014). *Principles to actions: Ensuring mathematical success for all.* Reston, VA: Author.

Levels of Classroom Discourse

Teacher Role	Questioning	Explaining Mathematical Thinking	Mathematical Representations	Building Student Responsibility within the Community
Level 0				
Level 1				
Level 2				
Level 3				

Hufferd-Ackles, K., Fuson, K. C., & Sherin, M. G. (2004). Describing levels and components of a math-talk learning community. *Journal for Research in Mathematics Education*, 35(2), 81–116.

Levels of Classroom Discourse

Teacher Role	Questioning	Explaining Mathematical Thinking	Mathematical Representations	Building Student Responsibility within the Community
Level 0				
Level 1				
Level 2				
Level 3				

Hufferd-Ackles, K., Fuson, K. C., & Sherin, M. G. (2004). Describing levels and components of a math-talk learning community. *Journal for Research in Mathematics Education*, 35(2), 81–116.

NAME			

Five Practices for Classroom Discourse

(Smith and Stein, 2011)

Anticipating	
Monitoring	
Selecting	
Sequencing	
Connecting	

Explanation Game

1. *Take it:* Remove one item at a time from the bag. (Draw a picture, or label it).

2. *Name it.* Name a feature or aspect of the object you notice.

3. *Explain it.* What could it be? What role or function might it serve? Why might it be there?

4. *Give reasons*. What makes you say that? Support your ideas.

5. Generate alternatives. What other ideas do you have?

Ritchhart, R., Church, M., & Morrison, K. (2011). *Making thinking visible: How to promote engagement, understanding, and independence for all learners. John Wiley & Sons.*

Framework for Mathematics Teaching Questions

Description	Examples
	Description

National Council of Teachers of Mathematics. (2014). *Principles to actions: Ensuring mathematical success for all.* Reston, VA: Author.

NAME		

Encouraging Discourse and Questioning

Notice

Wonder

Question

Engage in Tasks

Solve Problems

Reflect

Tricycle Race

Happy Days Preschool is having their annual tricycle race! We are now ten minutes into the race. The tricycles have traveled this far to the finishing line. Show where each tricycle is on the number line and then make a prediction about which tricycle will win.

Miguel and Janie

Miguel and Janie are each painting a mural. Janie says that she painted ³/₄ of the mural and Miguel said that he painted ³/₈ of the mural. Who has most of the mural painted? Use words, pictures, and representations to show your thinking.

What Does the Whole Look Like?

Create your own using any materials at your table.

If this is 1/5, what does the whole look like?

If this is 1/4, what does the whole look like?

Which whole is greater?

Sharing Brownies

2 people and 3 brownies	5 people and 6 brownies
6 people and 4 brownies	8 people and 5 brownies

1-CENTIMETER GRID PAPER

Purposeful Questions

What Are Teachers Doing?	What Are Students Doing?

National Council of Teachers of Mathematics. (2014). *Principles to actions: Ensuring mathematical success for all.* Reston, VA: Author.

Levels of Classroom Discourse

Teacher Role	Questioning	Explaining Mathematical Thinking	Mathematical Representations	Building Student Responsibility within the Community
Level 0				
Level 1				
Level 2				
Level 3				

Hufferd-Ackles, K., Fuson, K. C., & Sherin, M. G. (2004). Describing levels and components of a math-talk learning community. *Journal for Research in Mathematics Education*, 35(2), 81–116.

Levels of Classroom Discourse

Teacher Role	Questioning	Explaining Mathematical Thinking	Mathematical Representations	Building Student Responsibility within the Community
Level 0				
Level 1				
Level 2				
Level 3				

Hufferd-Ackles, K., Fuson, K. C., & Sherin, M. G. (2004). Describing levels and components of a math-talk learning community. *Journal for Research in Mathematics Education*, 35(2), 81–116.

NAME				

Five Practices for Classroom Discourse

(Smith and Stein, 2011)

Anticipating	
Monitoring	
Selecting	
Sequencing	
Connecting	

Explanation Game

1. *Take it:* Remove one item at a time from the bag. (Draw a picture, or label it).

2. *Name it.* Name a feature or aspect of the object you notice.

3. *Explain it.* What could it be? What role or function might it serve? Why might it be there?

4. *Give reasons*. What makes you say that? Support your ideas.

5. Generate alternatives. What other ideas do you have?

Ritchhart, R., Church, M., & Morrison, K. (2011). *Making thinking visible: How to promote engagement, understanding, and independence for all learners. John Wiley & Sons.*

Framework for Mathematics Teaching Questions

Question type	Description	Examples
Gathering Information		
Probing Thinking		
Making the Mathematics		
VISIDIE		
Encouraging Reflection		

National Council of Teachers of Mathematics. (2014). *Principles to actions: Ensuring mathematical success for all.* Reston, VA: Author.

Encouraging Discourse and Questioning

Nation
Notice:
Wonder:
Question
Task:
Solve Problem:
Reflect

Who is in the House?

T-Shirt

Aunt Betsy decided to help get his order together by having him package his t-shirts into groups of ten.

You are going to get a t-shirt order. Help Uncle Ronnie figure out how many groups of ten and how many single t-shirts you will have in your order.

Jenny's Birthday

Jenny is 7 years old today. How many candles have been on her birthday cake since she was born?

	g Institute Award ★
is	presented to
	for
Signature	Date
<u>]:</u>	
Charleston Febru Effective with <i>Princip</i> Implementing Colle NCTM INT	ary 6-7, 2015 Teaching les to Actions: ge- and Career-Readiness Standards ERACTIVE INSTITUTES

Beliefs About Mathematics Assessment

Select 2 statements about assessment. Write **P** if is a productive belief or **U** if it is a unproductive belief. Be sure to explain your reasoning.

The primary purpose of assessment is accountability for students through report card marks or grades.	Only multiple-choice and other "objective" paper-and-pencil tests can measure mathematical knowledge reliably and accurately.
Assessment is an ongoing process that is embedded in instruction to support student learning and make adjustments to instruction.	Assessment in the classroom is an interruption of the instructional process.
Mathematical understanding and processes can be measured through the use of a variety of assessment strategies and tasks.	A single assessment can be used to make important decisions about students and teachers.
Assessment is a process that should help students become better judges of their own work, assist them in recognizing high-quality work when they produce it, and support them in using evidence to advance their own learning.	Assessment is an ongoing process that is embedded in instruction to support student learning and make adjustments to instruction.
Assessment is something that is done to students.	Stopping teaching to review and take practice tests improves students' performance on high- stakes tests.
Multiple data sources are needed to provide an accurate picture of teacher and student performance.	Ongoing review and distributed practice within effective instruction are productive test preparation strategies.

National Council of Teachers of Mathematics. (2014). *Principles to actions: Ensuring mathematical success for all.* Reston, VA: Author

Write >, <, or = in the circle to compare the fractions. Explain how they could be

I could the lines to see how many it was

- The point shows ¾ on each number line. Write the missing 1. endpoint for each number line in the box.
- The point shows ¾ on each number line. Write the missing 3. endpoint for each number line in the box.

The point shows ¾ on each number line. Write the missing / 2. endpoint for each number line in the box. 0 0 0

Explain how you found your endpoints.

The point shows $\frac{1}{2}$ on each number line. Write the missing 4. endpoint for each number line in the box.

