

Imagine this task

• Instead of:

18 + [] + [] = 30, I ask:

Imagine this task

- The sum of 3 whole numbers is 30.
 - Is it true that at least one number is even?

Imagine this task

- Orlask:
- The sum of 3 whole numbers is 30. Which are true?
- A. At least one number is greater than 10.
- B. All numbers must be even.
- C. At least one number is a multiple of 3.
- D. The difference between the greatest and least of the numbers is a multiple of 3.

Responses

- A. True
- B. False (25, 2, 3)
- C. False (14, 14, 2)
- D. False (25, 2, 3)

Reasoning is encouraged when analyzing patterns

- We really don't just want students to observe patterns.
- The math is the explanation that exposes the underlying structure.

For example

- Is 100 in this pattern or not?
- 4, 8, 12, 16,....
- How do you know?

For example

- 40, 51, 62, 73,...
- How do you know?

One struggle students face

 is that they (and their teachers) struggle with what constitutes evidence of how we know something is true. There is often "sloppiness" about evidence.

For example...

- A teacher asks why you get an even number when you multiply an odd by an even.
- A student says : It works for 3 x 6 and 5 x 8 and 9 x 10.

For example...

 A response should be "good start, but how do you know it works for other odds and evens?"

Eventually we need

• Suppose there are an even number of copies of an odd number. • Even + 1 • Even + 1 • Even + 1 Even + 1

Let's try with this

 You show a number with 5 full ten-frames and less than half of another tenframe.

• What could it be?

5 full ten-frames and less than half of another

Or

 The sum of the digits of a 3-digit number is 15.
 What is the greatest possible number? How do you know?

Maybe

- It has to start with 9 to be as great as possible.
- The other two digits must add to 6.
- The greatest must be 960.

A ratio is equivalent to 9:50.

Or

Could it be

 equivalent to
 another ratio with
 whole number
 terms where the
 second term is
 120?

The reasoning might be...

 If 9:50 = ?
 :120,then you'd have to have multiplied 9 by 2.4 and that's not a whole number.

Here's another idea to propose.

- There is no prism with 25 edges.
- True or false?

Students might think....

- Notice that a rectangular prism has 12 edges.
- Notice that a pentagonal prism has 15 edges.

Students might think....

 So the number of edges is 12, 15, and I don't think there could be 25.

Or it might be this proposal

 There is only one pair of whole numbers with a sum of 100 and a difference of 8.

 How would you convince someone that is true, or is it?

Maybe I'll think of numbers that add to 100

- 100 + 0 are 100 apart apart.
- 50 + 50 are 0 apart.
- 60 + 40 are 20 apart.
- 55 + 45 are 10 apart.
- 54 + 46 are 8 apart.

Maybe

- a + b = 100
- a b = 8
- a = 100 b
- a = 8 + b
- 100 b = 8 + b
- 2b = 92

It might be something like

Without getting the answers for these questions, how do you know that 4 + 7 will have to be less than 6 + 6?

I hope students think

• 4 + 7 is the same as 5 + 6 since you just move one from the 7 to the 4. • And 5 + 6 has to be less than 6 + 6.

Or you could propose:

- Any whole number starting with 3 appears in one, but only one, of these patterns.
- 3, 6, 9, 12,...
- 4, 7, 10, 13,...
- 5, 8, 11, 14,....
- Do you agree or not? Why?

You might think...

Or

A 3, 6, 9, 12,... B 4, 7, 10, 13,... C 5, 8, 11, 14,....

Every number has a remainder of 0, 1, or 2 when you divide by 3.

You might propose:

 A square's area is always one unit greater than the area of a rectangle that is one unit longer and one unit less wide than the square.

One might draw a bunch of squares and check

- Use a 3 x 3 square.
- 3 x 3 is 1 more than 2 x 4.
- Use a 5 x 5 square.
- 5 x 5 is 1 more than 4 x 6.
- Etc.

Maybe

Maybe

You could propose

I might...

Or you could propose:

• The sum of 3 consecutive numbers is a multiple of 3.

I might

I might

2 truths and a lie

- 68 can be represented with 32 base ten blocks.
- 148 with 43 blocks
- 502 with 142 blocks.
- Which do you think is the lie?

It turns out that

- 68 can be 4 rods and 28 ones, or 32 base ten blocks.
- 148 with 43 blocks [It could be 40 blocks- 12 rods and 28 ones.]
- 502 can be 40 tens and 102 ones, or 142 blocks.

2 truths and a lie

- 48% of 50 is the same as 50% of 48.
- 120% of 80 is 60% of 40.
- 84% of 60 is 42% of 120.
- Which do you think is the lie?

It turns out that

- 0.48 x 50 = 0.50 x 48
- Lie since 120% of 80 is more than 80 but 60% of 40 is less than 40.

- You add two numbers and also subtract them.
- The sum is 20 more than the difference.
- What could the numbers be?

• Just try, but then

- You add two numbers and also subtract them.
- The sum is double the difference.
- What could the numbers be?

You can just try

You learn that some possibilities are:
9 and 3
15 and 5
12 and 4.

You start to guess what's going on.

But then you think about why

As you can see

- - A lot of this is about getting past examples and looking at the structure, often visually.

You could

Your questions

• Are there still issues you wish to raise?