# Cultivating Reasoning 

Marian Small
May 2023

## Imagine this task

- Instead of:

$$
18+[]+[]=30, \text { l ask: }
$$

## Imagine this task

- The sum of 3 whole numbers is 30 .
- Is it true that at least one number is even?


## Imagine this task

- Or I ask :
- The sum of 3 whole numbers is 30 . Which are true?
- A. At least one number is greater than 10.
- B. All numbers must be even.
- C. At least one number is a multiple of 3.
- D. The difference between the greatest and least of the numbers is a multiple of 3 .


## Responses

- A. True
- B. False $(25,2,3)$
- C. False $(14,14,2)$
- D. False $(25,2,3)$


# Reasoning is encouraged when analyzing patterns 

- We really don't just want students to observe patterns.
- The math is the explanation that exposes the underlying structure.


## For example

- Is 100 in this pattern or not?
- $4,8,12,16, \ldots$.
- How do you know?


## For example

- Is 480 in this pattern?
- $40,51,62,73, \ldots$
- How do you know?


## One struggle students face

- is that they (and their teachers) struggle with what constitutes evidence of how we know something is true. There is often "sloppiness" about evidence.


## For example...

- A teacher asks why you get an even number when you multiply an odd by an even.
- A student says : It works for $3 \times 6$ and $5 \times 8$ and $9 \times 10$.


## For example...

- A response should be "good start, but how do you know it works for other odds and evens?"


## Eventually we need

- Suppose there are an even number of copies of an odd number.
- Even + 1
- Even + 1
- Even + 1


## Let's try with this

- You show a number with 5 full ten-frames and less than half of another tenframe.
- What could it be?


## 5 full ten-frames and less than half of another

| $\odot$ | $\odot$ | $\odot$ | $\odot$ | $\odot$ |
| :---: | :---: | :---: | :---: | :---: |
| $\odot$ | $\odot$ | $\odot$ | $\odot$ | $\odot$ |
| $\cdots$ | $\odot$ |  |  |  |
|  | $\ddots$ |  |  |  |



| $\odot$ | $\odot$ | $\odot$ | $\odot$ | $\odot$ |
| :---: | :---: | :---: | :---: | :---: |
| $\odot$ | $\odot$ | $\odot$ | $\odot$ | $\odot$ |
| + | $\odot$ | $\ddots$ |  |  |


| $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | (\%) |
| :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |


| $\odot$ | $\odot$ | $\odot$ | $\odot$ | $\odot$ |
| :---: | :---: | :---: | :---: | :---: |
| $\odot$ | $\odot$ | $\odot$ | $\odot$ | $\odot$ |
| $\cdots$ | $\odot$ |  |  |  |


|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
|  |  |  |  |  |

## Or

- The sum of the digits of a 3-digit number is 15 . What is the greatest possible number? How do you know?


## Maybe

- It has to start with 9 to be as great as possible.
- The other two digits must add to 6.
- The greatest must be 960 .


## Or

- A ratio is
equivalent to 9:50.
- Could it be
equivalent to another ratio with whole number terms where the second term is 120?


## The reasoning might be...

- If 9:50 = ?
:120,then you'd have to have multiplied 9 by 2.4 and that's not a whole number.


## Here's another idea to propose.

- There is no prism with 25 edges.
- True or false?


## Students might think....

- Notice that a rectangular prism has 12 edges.
- Notice that a pentagonal prism has 15 edges.


## Students might think....

- So the number of edges is $12,15, \ldots$. and I don't think there could be 25 .


## Or it might be this proposal

- There is only one pair of whole numbers with a sum of 100 and a difference of 8 .
- How would you convince someone that is true, or is it?


## Maybe l'll think of numbers that add <br> to 100

- $100+0$ are 100 apart apart.
- $50+50$ are 0 apart.
- $60+40$ are 20 apart.
- $55+45$ are 10 apart.
- 54 + 46 are 8 apart.


## Maybe

> - $a+b=100$
> - $a-b=8$

- $a=100-b$
- $a=8+b$
- $100-b=8+b$
- $2 b=92$


## It might be something like

- Without getting the answers for these questions, how do you know that $4+7$ will have to be less than $6+6$ ?



## I hope students think

- $4+7$ is the same as
$5+6$ since you just move one from the 7 to the 4 .

- And $5+6$ has to be less than $6+6$.



## Or you could propose:

- Any whole number starting with 3 appears in one, but only one, of these patterns.
- $3,6,9,12, \ldots$
- $4,7,10,13, \ldots$
- $5,8,11,14, \ldots$.
- Do you agree or not? Why?


## You might think...

$$
\begin{aligned}
& \text { A } 3,6,9,12, \ldots \\
& \text { B } 4,7,10,13, \ldots \\
& \text { C } 5,8,11,14, \ldots .
\end{aligned}
$$

Where are 30,31 , $32, . .39$ ?

## Or

$$
\begin{aligned}
& \text { A } 3,6,9,12, \ldots \\
& \text { B } 4,7,10,13, \ldots \\
& \text { C } 5,8,11,14, \ldots .
\end{aligned}
$$

Every number has a remainder of 0,1 , or 2 when you divide by 3 .

## You might propose:

- A square's area is always one unit greater than the area of a rectangle that is one unit longer and one unit less wide than the square.


## One might draw a bunch of squares and check

- Use a $3 \times 3$ square.
$3 \times 3$ is 1 more than 2 $\times 4$.
- Use a $5 \times 5$ square.
$5 \times 5$ is 1 more than 4 $\times 6$.
- Etc.


## Maybe



## Maybe



## You could propose

- The sum of two multiples of 3 has to be a multiple of 3.
- Convince us!

I might...

$\bigcirc \bigcirc$
$\bigcirc \bigcirc$
$0 \bigcirc 0$
00
000
$\bigcirc \bigcirc \bigcirc$

## Or you could propose:

- The sum of 3 consecutive numbers is a multiple of 3 .


## I might



## I might



## 2 truths and a lie

- 68 can be represented with 32 base ten blocks.
- 148 with 43 blocks
- 502 with 142 blocks.
- Which do you think is the lie?


## It turns out that

- 68 can be 4 rods and 28 ones, or 32 base ten blocks.
- 148 with 43 blocks [It could be 40 blocks- 12 rods and 28 ones.]
- 502 can be 40 tens and 102 ones, or 142 blocks.


## 2 truths and a lie

- $48 \%$ of 50 is the same as $50 \%$ of 48.
- $120 \%$ of 80 is $60 \%$ of 40.
- $84 \%$ of 60 is $42 \%$ of 120.
- Which do you think is the lie?


## It turns out that

- $0.48 \times 50=0.50 x$ 48
- Lie since $120 \%$ of 80 is more than 80 but $60 \%$ of 40 is less than 40.

| 60 | 60 |
| :---: | :---: |
| $84 \%$ |  |

## What do you think?

- You add two numbers and also subtract them.
- The sum is 20 more than the difference.
- What could the numbers be?


## What do you think?

- Just try, but then


## What do you think?



## What do you think?

- You add two numbers and also subtract them.
- The sum is double the difference.
- What could the numbers be?


## You can just try

- You learn that some possibilities are: 9 and 3
15 and 5
12 and 4.

You start to guess what's going on.

## But then you think about why



## As you can see

- A lot of this is about getting past examples and looking at the structure, often visually.


## You could

- Encourage students, when they notice things, to try to prove why.


## Your questions

- Are there still issues you wish to raise?

