

Origami & Mathematics

Please work on the problem below while we wait to begin:

Do Now

When the midpoint M of one side of a square paper is folded over to a vertex as shown on the right, a 37° angle is created. Find the measures of all the angles in the diagram.

NCTM 2020 Presented by Joy Hsiao Brooklyn Technical High School

Today's goals

- Share my experiences
- Share my students' work
- Build your experiences
- Q&A (last 5-10 minutes)

Review Problem

(Answers can be found on the handout.)

Q: What are the side lengths of the right triangles?

Solution on the next page

Two extension problems:

Prove

- 1. All three triangles are similar.
- 2. The triangle side lengths are multiples of 3-4-5.

My origami journey with my students

Menger Sponge (a 14" fractal cube) Bard HS Early College (2009)

Photo and origami by Joy Hsiao, Menger Sponge, 2009

Menger Sponge (a fractal)

Bard HS Early College (2009)

Photo and origami by Joy Hsiao, Menger Sponge, 2009

Math Horizons, April 2011

Bridges Conference Towson University (2012)

Photo by Christopher Bartlett, *Bridges Conference Art Exhibition*, 2012 http://bridgesmathart.org/bridges-2012/month-long-art-exhibition

Brooklyn Tech HS (2012)

Photo by Joy Hsiao, Brooklyn Tech, 2012

Math investigations (2015)

Hsiao J., Finding Fifths in Origami, *Mathematics Teacher*, *Vol. 109*, August 2015

Math investigations (2015)

Photos and origami by Joy Hsiao, Stars and origami diagram, 2020

Math investigations (2015)

- Algebra
- Geometry
- Trigonometry

Fig. 5 The angle measure of interest is approximately 70.52°, not the ideal 72°.

Hsiao J., Finding Fifths in Origami, *Mathematics Teacher*, *Vol. 109*, August 2015

Sample student work 1

By Anna Tao, Brooklyn Tech 2012

\(\frac{9}{2} \) is the width of the white part in step \(\emptyre{O} \).
\(\frac{9}{2} = \frac{\times}{5} \), where \(\times = \text{side} \) length of original square.
\(\text{: the width of white part in step } \(\text{C} \) is \(\frac{1}{5} \)
\(\text{the side length of the original square.} \(\text{q. e. d.} \).

Origami Exercise

• Two-fold angle – conjecture, proof, construction of crease pattern

1. Pinch a midline

2. Bring the lower right corner to the midline and create a crease that ends at the lower left corner.

3. Find x.

Photos by Joy Hsiao, Stuyvesant High School, 2017

2017 Origami USA Annual Convention

Sample student work 2

Trigonometric Application

After folding the modular piece, I outlined the crease patterns on the paper with different colors. It was helpful to also fold and indicate the 8x8 grid so that I could notice patterns in the folds. What I noticed was that vertex A of the triangle was exactly 1 unit away from the edge of the paper and that vertex C was exactly 2 units away from the edge of the paper. From this. I was able to determine that length AC is exactly 5 units long. I also noticed that the perpendicular dropped from vertex B was exactly 2 units long and the point at which the perpendicular intersects with side AC was 1 unit away from vertex A. Using this information, I used the Pythagorean theorem to find the lengths

of sides AB and BC:

"I used the Pythagorean theorem to find the lengths of side AB and BC."

"After, I used the law of cosines to find the angles of the triangle."

$$AB = \sqrt{BO^2 + AO^2} = \sqrt{2^2 + 1^2} = \sqrt{5} = 2.236 \dots$$

$$BC = \sqrt{BO^2 + CO^2} = \sqrt{2^2 + 4^2} = \sqrt{20} = 2\sqrt{5} = 4.472 \dots$$

After, I used the law of cosines to find the angles of the triangle:

$$BC^{2} = AB^{2} + AC^{2} - 2(AB \cdot AC \cdot \cos A)$$

$$\sqrt{20}^{2} = \sqrt{5}^{2} + 5^{2} - 2(\sqrt{5} \cdot 5 \cdot \cos A)$$

$$0.4472 \dots = \cos A$$

$$A = 63.4349 \dots$$

I confirmed these calculations by drawing all the crease patterns on Geogebra:

"I confirmed the calculations by drawing all the crease patterns on GeoGebra."

Question:

If the square paper used to fold this model is 1x1, what is the edge length of the finished cube?

Photos by Joy Hsiao, Linked Cubes, 2017

Hidden Beauty –

the folding process, logic, and changing patterns

Photos and origami by Joy Hsiao, Polyhedron, 2017

Photos and origami by Joy Hsiao, Four Fish, 2017

Four Fish (2017)

(A 30 cm x 30 cm tessellation)

Bridges Conference

University of Waterloo (2017)

Bridges Conference

University of Waterloo (2017)

Nämnaren. Tidskrift för Matematikundervisning, January 2018

Queens Metropolitan High School

(Arts and Mathematics 2018)

Mini books (one sheet)

Boxes with lids

Brooklyn Technical HS (Valentine's Day 2020)

Students' observations:

- Perpendicular and parallel lines
- Angle bisectors
- Diagonals of a square are congruent and perpendicular
- 8 congruent isosceles right triangles
- Rotational symmetry of 90°
- Line symmetries
- Dilation of a square with a constant of dilation equal to 3 (estimated)
- Similar triangles
- 45-45-90 triangles and so on...

Photos and origami by Joy Hsiao, Hearts and crease pattern, 2020

Sample student work 3 (origami heart crease pattern)

First attempt by Lang Ni Brooklyn Tech 2019

Polyhedra — regular, semi-regular, truncated, stellated

Polyhedra — regular, semi-regular, truncated, stellated

Platonic Solids	# vertices	# edges	# faces
Tetrahedron	4	6	4
Cube	8	12	6
Octahedron	6	12	8
Dodecahedron	20	30	12
Icosahedron	12	30	20

Photos and origami by Joy Hsiao, Modular Origami Solids, 2012-2019

Tessellations (made with one piece of paper)

Photos and origami by Joy Hsiao, Tessellations, 2016-2019

Fractals (self-similar property)

Menger Sponge (Karl Menger)

Recycled Materials

Wallets made with subway maps,

Interactive origami

Interactive origami Fireworks

Photos and origami by Joy Hsiao, Fireworks, 2020

Origami Exercise

• Two-fold angle – conjecture, proof, construction of crease pattern

1. Pinch a midline

2. Bring the lower right corner to the midline and create a crease that ends at the lower left corner.

3. Find x.

Proof without words

Crease pattern constructions

square intersection midpoint auxiliary line circle angle bisector perpendicular bisector

When I fold origami, I

- 1. Try to understand the logic
- 2. Pose questions
- 3. Think about extensions (variations)
- 4. Prove observations mathematically

When I solve math problems, I

- 1. Try to understand the logic
- 2. Pose questions
- 3. Think about extensions (variations)
- 4. Prove observations mathematically

Origami as a research topic

- Easy to pose original questions
- Hands-on, multidimensional
- High school math, applications of prior knowledge in new situations
- Accessible to students on all levels
- Rich in math connections

Origami Dog

