November 2014, Vol. 45, Issue 5
A Method for Using Adjacency Matrices to Analyze the Connections Students Make Within and Between Concepts: The Case of Linear Algebra
Natalie E. Selinski
The central goals of most introductory linear algebra courses are to develop students’ proficiency with matrix techniques, to promote their understanding of key concepts, and to increase their ability to make connections between concepts. In this article, we present an innovative method using adjacency matrices to analyze students’ interpretation of and connections between concepts. Three cases provide examples that illustrate the usefulness of this approach for comparing differences in the structure of the connections, as exhibited in what we refer to as dense, sparse, and hub adjacency matrices. We also make use of mathematical constructs from digraph theory, such as walks and being strongly connected, to indicate possible chains of connections and flexibility in making connections within and between concepts. We posit that this method is useful for characterizing student connections in other content areas and grade levels.
Key words: Adjacency matrices; Connections; Linear algebra; Research method
This article is available to members of NCTM who subscribe to
Journal for Research in Mathematics Education. Don't miss outjoin now or upgrade your membership. You may also purchase this article now for online access.
Log In/Create Account
Purchase Article